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Section 1

INTRODUCTION AND SUMMARY

Over the past three years, SAI has developed and

extensively exercised the SXRP code under the DNA-AFSC

sponsorship to provide a rigorous capability in soft

x-ray photoemission and provide results which can be

directly compared with measured photoemission spectra and

yields for exploding wire radiator (EWR) sources. The code

and applications have been well-documented in a number of
1-8

reports and papers. Code validation has been an active
part of the overall program and has met with considerable

success. 2'4'6 Photoemission and electron backscatter

results have been obtained for the materials:

* aluminum (Ak),

0 aluminum oxide (AZ203 ), and

0 silicon dioxide (SiO 2 ).

Sources considered for photoemission have included an

OWL II" EWR source, line sources, blackbody spectra, and

a 50 kVp Bremmstrahlung spectrum generated by Bradford.
9

Electron backscatter calculations have been carried out

for incident electron energies in the low keV range.

II III II r VAN
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The above work, as well as that reported herein,

has been undertaken in support of DNA's SKYNET program

which is concerned with satellite SGEMP effects caused by

soft x-ray sources. The three materials listed above are

but part of a larger set being actively invest sated in the

SKYNET program and more generally in various .ograms

concerned with SGEMP and spacecraft charging effects.

Examples of other materials of interest are gold and carbon

dominated dielectrics, such as Kapton. To address this

larger set of materials, work during the given contract

period was undertaken on four new materials:

" gold (Au),

" silver (Ag).

" copper (Cu). and

" carbon (C).

This effort, in some aspects, represented a significant

departure from earlier work. The new materials, especially

Au, are considerably more complicated in their atomic

structure (with the exception of C) and there is generally

less information available on the needed material parameters

compared to the three materials previously investigated.

Consequently, a larger fraction of the effort had to be

directed to the specification of these parameters. This

will be evident in the sections to follow in which we

present a considerable amount of information on the material

models themselves.

8



Gold was the firs,;t new material we addressed in

this work. A disproportionate amount of time had to be

spefnt on this material since an extension of current

capabilities was required due to the high-Z nature of Au

and, as noted above , due to th, need to generate certain

type:s of paramet(:rs for the first time. The primary limita-

tion in capabilities centered on our description of

e(l astic scattering. The specification of the differential

czross section, while adequate for a low-Z material like

A", proved unacceptable for Au having a Z-value of 79

To correct this situation, we carried out an investigation

of the atomic screening potential itself with consideration

given to solid state effects on this potential. This work

was begun under a previous contract and a further discussion

may be found in the associated final report. 6

Gold appears to have more photoemission and

electron backscatter associated with it than the other

three new materials. This provides another reason for the

greater emphasis on this material in addition to considering

it for extending of our capabilities in modeling materials.

Several results will be presented and compared with published

data in addition to those for the OWL II' EWR source which

is the source of prime concern at this time in the SKYNET

program.

The objectives in this work may be listed as

follows:

* Specify material models for Au, Ag, Cu, and
C to rigorously investigate soft x-ray

photoemission.

9



0 Validate the models:

- compare to other values of material
model parameters,

- compare transport results with measure-

ments:

-- photoemission yields,

-- electron backscatter yields.

* Provide a basic understanding of photo-
emission for soft x-ray sources incident
on the new materials.

0 Directly support the SKYNET program through
comparisons of the calculated photoemission
spectra and yields with measurements of
these quantities for the OWL'II EWR source.

Overall, these objectives were met with good success

although more work should be done on material model valida-

tion for Ag, Cu, and C. We were unable to find data for

these materials to the extent available for At and Au.

Thus, photoemission results for these materials are

necessarily more uncertain although we believe the larger

uncertainty is primarily in the yield and not in the overall

structure of the emission spectrum or in our understanding

of the important mechanisms operating.

We may summarize our results as follows:

0 The needed material models for a rigorous
description of SXRP have been specified for
the first time for Au, Ag, Cu, and C.

i
:10

-II



* For Au, photoemission and electron/backscatter
results were obtained for source: narrow in
energy between 1 and 5 keV and compared with
published data. Good agreement was achieved
for both photoemission and electron backscatter.

Photoemission spectra and yields were obtained
for an EWR source incident on each of the
newly modeled materials. The description for
Au should be good based on the excellent agree-
ment noted above. Less confidence can be
placed on the descriptions for Ag, Cu, and C
although we expect the yields to be accurate
to better than 50% and that, in general, the
spectral shapes will not change significantly
upon more detailed analyses.

The above results were compared with the
spectrometer data of Bernstein I0 and results
by Fromme, et al. 1 1 deduced from back-biased
diode data:

- Spectral shapes agree reasonably well
between the calculations and Bernstein's
data. An exception to this occurs for
Au between 1 and 2 keV. The calculated
spectrum is noticeably higher in this
region.

- Spectral shapes do not agree well at all
between the calculations and the Fromme,
et al. results. The diode data cannot be
used to provide spectral information with
a reasonable confidence level as demonstrated
in a previous report and further discussed
in this report for Au in Section 4.

- Total yields (for electrons above %0.1 keV)
agree to within a factor of two. The cal-
culated yield for Au, which should be
accurate based on above-mentioned compari-
sons, is %50% above Bernstein's value.
For Ag, the calculated yield is about half,
while for C it is about the same as
Bernstein's value. Further work is
planned for Ag which may resolve the
present discrepancy.

11



Section 2

GOLD

In this section, we discuss our first results

for photoemission and electron backscatter from Au using

the SXRP code. We also present, for the first time, a

detailed atomic model for Au which is required by the

code. The emphasis will be on a calculation of the photo-

emission spectrum and the total yield for an EWR source

incident on Au and comparison of these quantities with
11those deduced by Fromme, et al. from biased diode data

10and measured by Bernstein with a magnetic spectrometer.

A similar comparison has previously been made for Ak.

2.1 ATOMIC MODEL FOR GOLD

Gold is a particularly difficult material to

model for low energy electron transport calculations since

there are many subshells for which the photoionization

cross sections, electron IMFP's, and Auger energies and

yields must be specified. Prior to this work, much of the

needed information did not exist. A major part of the work

thus being reported here has been directed to specifying

the needed input parameters.

Table 1 shows the atomic shells and binding

energies explicitly treated in our calculations. The L and

K shells are not included since thei" binding energies are

12



TABLE 1. ATOMIC SHELLS OF Au TREATED IN

THIS WORK AND THEIR BINDING

ENERGIES

BINDING ENERGIES
SHELLS (keV)

M 3.425

M2  3.150

2.743

2.291

2.206

N 0.083

023 0.052

045 0.008

13
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I

above 10 keV, the upper limit to the energy range of cur-

rent interest. All electrons through the 0 shell are

treated as bound electrons. Gold also possesses a P shell

in the atomic form containing one electron. This electron

has been assigned to the conduction band in our formulation.

Figure 1 shows the photoabsorption coefficients

corresponding to Table 1. The 0 shell and N shell cross
12

sections are based on the work of Haensel, et al. and
13 14

Manson, respectively. The tabulations of Hubbell and
15

Biggs and Lighthill were used to provide the total M shell

cross section. The specification of the subshell cross

sections was made by us with the assistance of the binding

energies given in Table 1.

Figure 2 shows the inelastic IMFP's, both for

electron impact ionization of the inner shell electrons

and for ionization and plasmon excitation of the conduction

band electrons. To our knowledge, such information for the

inner shells of Au has not been specified before. Also

included in the figure are data giving the measured total
16-21

inelastic IMFP. The inner shell IMFP's were obtained

by us using a formula which directly relates the IMFP to

its corresponding photoabsorption coefficient. The coeffi-

cients in Figure 1 were used to obtain the given IMFP's.

A brief discussion of the method appears in the 1978 RADC

Final Report, together with its application to the K tnd

L shells of A .6 Good agreement was achieved with more
22

rigorous results by Ashley, et al. providing some con-

fidence that the method is giving a good approximate repre-

sentation to the IMFP as long as the photoabsorption coeffi-

cient is reasonably well specified. The plasmon and con-

duction band ionization IMFP's were obtained by us using the

14
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ORNL methodology2 2 which deals with the dielectric response

function in solids. To obtain the given results, a conduc-

tion band electron density given by one electron per atom

(the P electron) was used. This corresponds to a Fermi

energy of 5.5 eV.

Figure 3 shows the elastic IMFP, together with

the screening parameter n which specifies it. The sum of

all considered inelastic IMFP's is also included for com-

parison with the elastic IMFP. The elastic differential

IMFP is given by:

Kelas (E,O) = nZ e 1_,(I)
v2p2 (1 -cosO + 2n) 2

where 0 is the scattering angle, n is the material number

density, Z is the atomic number, and v and p, respectively,

are the velocity and momentum of the incident electron.

The screening parameter n is given by:

n(E) = 4.3 Z2 / 3 nc  (2)
E

whe i E is in eV and nc is a function of the screening

potential. The screening potential in conducting solids

can be adequately represented by a single Yukawa potential

which leads to constant nc . We choose the value nc = 3.2,

based on considerations given by Nigam, et al.2 3  As will

be seen, this choice gives good agreement with measurements

for both backscatter and photoemission yields. Excellent

agreement with measurements for the given n c has previously

been obtained for At.
6
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Our model for the relevant Auger spectroscopy

is given in Table 2. The model serves its one basic
requirement - the proper accounting of the bulk of potential

energy of the inner shell vacancies. For most transitions

shown in the table, several Auger lines exist although one

will usually be dominant. 24 The energy shown is the energy

of the dominant line within a group. For Au, the Auger

spectroscopy treatment in the SXRP code is considerably

more complicated than indicated by Table 2. Each of the

M subshells is treated explicitly which requires considera-

tion of intra-, as well as inter-shell transitions. A more

detailed description of the applied spectroscopy for Au

appears in the 1978 RADC Final Report.
6

2.2 PHOTOEMISSION FROM Au FOR AN EWR SOURCE

The results to follow are the first we have

obtained for Au using the SXRP code. For this reason,

the initial runs were made for selected narrow Gaussian

photon and incident electron sources so that the calculated

photoemission and electron backscatter yields could be

compared with published data. In this way, we are able

to determine if our material model for Au is reasonable

for such applications as predicting the photoemission

spectrum and the yield for an EWR source. Since this is

the application of interest in this subsection, results will

be presented for an EWR source next. This will then be

followed by photoemission and backscatter results for

narrow Gaussian sources to demonstrate that, in fact, we

do have a good working model for Au in the low keV range.

19



TABLE 2. TRANSITIONS, ENERGIES, AND YIELDS

FOR AUGER ELECTRONS IN Au

TRANSITION ENERGY YIELD

MNN 2.11 0.35

MNN 2.02 0.52

MNN 1.77 0.13

NNO 0.239 0.11

NOO 0.069 0.89

20



The representation of the EWR spectrum used to

do the calculations is shown in Figure 4. This spectrum

is based on crystal spectrograph data appearing in a 1977

Physics International report by Nielson,25 and has been

previously used to predict the photoemission from At.
4

The narrow feature peaking at 1.65 keV contains -50% of

the energy and is used in the calculations in place of the

two strong emission lines appearing in the data at 1.6 and

1.7 keV. Some variation has been seen to occur from shot

to shot in the energy content of these lines relative to

the rest of the spectrum. For example, Nielson reports

values of 65% and 50% for the two shots (2952 and 2953)

discussed in connection with the spectrograph data. It

is important to know how sensitive the photoemission

spectrum and total yield are to such a variation,

especially for direct comparisons of the calculated and

measured values of these quantities as will follow. To

address this point, we have obtained results for two EWR

spectra in addition to the one shown in Figure 4. For

the one case, the 1.65 keV feature contains x25% of the

energy, while for the other case, the value is %75%. The

resulting photoemission spectra will be presented in the

next subsection. For comparison with the measurements,

we will use the EWR spectrum which contains 50% of the

energy in the 1.65 keV feature. Variation of the energy

content in this feature does affect the shape of the

spectrum, but, interestingly enough, has virtually no

effect on the total yield when given in units of emission

current per unit incident fluence (e.g., coul/cal). Thus,

the calculated yield values we quote are independent of

the actual strength of the 1.65 keV feature. This will

be discussed further in the next section.

21
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9

The calculated photoemission spectrum for Au is

shown in Figure 5, together with Bernstein's spectrometer

measurements 1 0 and the spectrum by Fromme, et al. inferred
11

from back-biased diode data. The total yields are

included in the figure, as well as in Table 3, which are

3.2 x 10 coul/cal (SXRP), 2.1 x 10- coul/cal (Bernstein),

and 1.9 x 10- 5 coul/cal (Fromme, et al.). The SXRP value

is consistent with the value one would obtain by folding

the EWR photon spectrum with the observed total photo-

emission yield curve versus hv (see Figure 10).

The spectral shapes in Figure 5 are significantly

different from one another as was initially observed for

AZ. We have previsouly demonstrated that the diode data

of Fromme, et al., together with their analysis, cannot
4

provide a realistic spectrum. Bernstein's spectrum shows

reasonable agreement with the calculated spectrum at the

high and low energy ends. The calculation, however, predicts

considerably more emission in the middle region due to N

shell photoelectrons and MNN Auger electrons. This condition

persists over the range of uncertainty and variability in the

EWR photon spectrum which will be demonstrated in the next

section. We will now discuss in some detail the overall

features of the spectrum. To aid in this discussion, we show

the separate photo- and Auger contributions to the calculated

spectrum in Figure 6.

The features peaking at 2.1, 2.0, 1.8, and 0.24

keV are due to MNN and NNO Auger electrons (see Table 2).

Photons above 2.2 keV contribute to the MNN Auger emission.

The underlying continuum beginning at high energies and the

strong peak at 1.5 keV reflect the EWR spectrum and are due

primarily to N photoelectrons (see the N shell photoabsorp-

tion coefficient in Figure 1). The fall-off below the

23
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1.5 keV peak is governed by the scattering and energy loss

of the electrons originating above 1.5 keV. At the lowest

energies, the rise in the spectrum is due to the production

of secondary electrons and M photoelectrons. The MNN Auger

electrons contribute 30% to the total photoemission yield.

The photoemission spectrum is, in general, very

sensitive to the choice of maierial. This is particularly

true for an EWR source incident on At and Au, as illustrated

in Figure 7. The At spectrum was previously calculated with

the SXRP code and has been thoroughly discussed.4 The Au

spectrum is noticeably harder with a mean energy of 1.4 keV

compared with a mean energy of 1.0 keV for At. The yield

for Au is also more than twice that for At. At high energies

(5 2.2 keV), Au emits much more strongly due to its photo-

absorption coefficient being nearly an order of magnitude

larger than that for At at these energies. The rest of the

differences may be explained in terms of locations of edges

with respect to the photon spectrum and, as above, in terms

of relative magnitudes of the photoabsorption coefficients.

Prior to obtaining the EWR photoemission spectrum

for Au with the SXRP code, a representation of this spectrum

was obtained using a recently developed empirical photoemis-

sion code. 6 The code is based on the Schaefer-Burke

empirical model for line sources, 2 6 ,2 7 but generalizes the

model to handle an arbitrary photon spectrum. Figure 8

provides a comparison of the SXRP spectrum with the empirical

spectrum. Significant differences exist as was the case for

At. A detailed discussion of the causes for the overall

difference has been given for At. 6 Briefly, the SXRP code

provides a detailed description of scattering whereas the

assumption is made in the empirical code that electrons move
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in straight line trajectories from creation to escape.

The differing description in scattering is an important

source of the spectral differences. Another source involves

the treatment of energy loss. The SXRP code utilizes a

discrete energy loss description whereas the empirical code

utilizes a continuous energy loss description. Although

the empirical model does not provide an accurate photo-

emission spectrum, it has been quite successful in predicting

the total yield for various materials. 26

2.3 SENSITIVITY OF THE PHOTOEMISSION FROM Au TO
VARIATIONS IN THE EWR SPECTRUM

As discussed in the previous section, we have

performed calculations for three representations of the

EWR spectrum. These spectra, which will be referred to

as Spectra 1-3, contain 25%, 50%, and 75%, respectively,

of their energy in the narrow 1.65 keV feature. Spectrum 2

was previously presented in Figure 4. Spectra 1 and 3 are

obtained from Spectrum 2 by scaling the 1.65 keV feature by

the factors 1/3 and 3, respectively.

The resulting photoemission spectra are shown in

Figure 9, while total yield information appears in Table 4.

For each spectrum, the electron emission below 1.7 keV is

due primarily to the photons within the 1.65 keV feature.

In discussing the differences in Figure 9, it should be

kept in mind that each spectrum in el/cm2-sec-keV has been

divided by its respective photon fluence in cal/cm -sec.

For each photon spectrum, this fluence is given in Table 4.

Had the results in Figure 9 been presented in the units of

el/cm 2-sec-keV, all spectra would be identical above "1.7

keV with large differences below this energy. Instead,
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the spectra pivot with respect to one another about 1.7

keV due to the scaling by the different fluence values.

Although significant differences exist between

the three photoemission spectra in Figure 9, all give

essentially the same yield of 3.2 x 10- 5 coul/cal, as shown

in Table 4. This is due to the fortuitus circumstance that

each component of the EWR spectrum, i.e., the 1.65 keV

feature and the broader, more energetic continuum, give

nearly the same yield in coul/cal. Thus, all mixtures of

these components must give similar yields. This will not

be the case for other materials. More yield variation

between the components exists in units of el/ph which, in

turn, leads to greater differences in this yield between

the various EWR spectra, as shown in the table.

2.4 PHOTOEMISSION AND ELECTRON BACKSCATTER FROM
Au FOR NARROW ENERGY SOURCES

SXRP photoemission spectra and yields will be

presented in this section for narrow Gaussian photon

distributions peaking at 1.0, 2.0, 2.5, and 5.0 keV. An

electron backscattered spectrum and its total yield will

also be presented for a 2 keV incident electron source.

The above photon energies are in key regions with respect

to the EWR spectrum and locations of photoabsorption edges.

An incident electron energy of 2 keV is at a good value

for testing the elastic scattering differential IMFP in

the region pertinent to electron transport for an EWR

source.
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Table 3 gives the calculated and measured total

yields for the above sources, as well as for the previously

discussed EWR spectrum. The calculated photoemission yields

for the Gaussian sources are also shown in Figure 10 which

includes measured and empirically predicted yields from

0.1 to 10 keV. The data and the curve by Burke previously
26

appeared in a paper by him. The value of this figure is

in showing the yield dependence as a function of hv. Thus,

even though a data point does not exist to 2.5 keV, we can

closely estimate what the value should be from the available

data, as well as from the empirical curves which give a good

indication of how the yield changes in the vicinity of the

various edges. We see for the above sources, that good

agreement is obtained with the measurements which suggests

we have achieved a good representation of basic atomic model

in terms of photoabsorption coefficients, the elastic

DIMFP, the inelastic DIMFP's, and the Auger energies and

yields. The agreement also suggests that we have obtained

a good representation of the EWR photoemission spectrum and

total yield for Au.

Figures 11-14 show the photoemission spectra and

cumulative yields for the four Gaussian sources. The major

contribution to photoemission for 1 and 2 keV photons on

Au comes from h shell photoelectrons since these energies

are below the energy of any of the M subshell edges. The

results for the photon energies of 2.5 and 5.0 keV are

significantly different, however, since there are now M

edges below these energies. The dominant source of photo-

emission for 2.5 keV photons is Auger emission arising from

the M4NN and M5NN Auger transitions. For 5.0 keV photons,

the MNN Auger features still dominate although an important

M photoelectron feature now appears at 2.8 keV.

34



1-4

En4' m -n

>~ > z

0- 0 

>~- >--44-
- c -c -1 -. I

-4 Q0

m m

0~ :n0ci

4-) Cd
0 (1

0 00

* vo -t~/;o I- C)ra G'.
x Z *4

35z



GOLD

z

0

z 1vkeV

> 10 10

a

DIFFERENTIAL

0

- 1 -

10-5 10 -

-J

1i0-6 10 -5

0 0.5 1

ELECTRON ENERGY (keV)

FIGURE 11. Calculated Photoemission Spectrum and

Cumulative Back Yield for a Narrow 1 keV

Gaussian Photon Source Incident on Au.

36



GOLD

hv 2 keV z

D1 FYI:HE:NT I A L

0

10 6

0 1 2
ENERGY (kReV)

FIGURE 12. Calculated Photoemission Spectrum and

Cumulative Back Yield for a Narrow 2 keV

Gaussian Distribution Incident on Au.

37



GOLD

hv = 2.5 keV z =

oz
z -

"-l~u D I FFEIRENTr I A1L

10 - 5  - 1O

Cd ~~CUMULAT IVE.

0

-6 510 10 Z

10

01 2

ENI'RGY (kCCV)

FIGURE 13. Calculated Photoemission Spectrum and

Cumulative Back Yield for a Narrow 2.5 keV

Gaussian Distribution Incident on Au.

38



I I I I

z GOLD
z Z'

1 - 5  z hv 5 keV

DIFFERENTIAL

-4n

C.-)

E0

o ci

-6 5

S 10- _ 10 .

-
wW

CUMULATIVE

10-7  1 1 \1 10- 6
0 1 2 3 4 5

ELECTRON ENERGY (keV)

FIGURE 14. Calculated Photoemission Spectrum and

Cumulative Back Yield for a Narrow 5 keV

Gaussian Photon Source Incident on Au.

39



Figure 15 shows the backscattered spectrum and

cumulative yield for a 2 keV Gaussian electron source

incident on Au. The incident spectrum, given by the dashed

curve is also shown. The incident electrons are not all

normally incident, but rather have the Gaussian distribution

shown in Figure 16 as a function of p, the cosine of the

angle of incidence. Included in the figure is the approxi-

mate variation of the backscatter yield for Au as a function
28

of P. Based on Figure 16, the yield obtained with the

given angular dependence of the incident electrons must be

reduced by 0.93 to compare with data taken for normally

incident electrons. The calculated value appearing in

Table 3, 53%, has been adjusted to normal incidence by the

above factor from the value 57% appearing in Figure 15.

From the table, it is seen that good agreement is achieved

between the calculations (53%) and measurements (50%).28
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Section 3

THE REMAINING MATERIALS SILVER,

COPPER AND CARBON

In this section, material models and photo-
emission results for the EWR source will be presented for

the remaining three materials - silver, copper, and

carbon. Furthermore, comparisons with EWR photoemission

data will be made where possible, namely, for silver and

copper.

3.1 SILVER

Silver represents a conductor of intermediate

atomic number (Z=47). Its density is 10.5 g/cm 3 . The

47 electrons are distributed among the shells K through 0.

Similar to Au, we have lumped together various subshells

whose binding energies are close together. Table 5 gives

our represent.- i,,n of the shell structure together with

binding energies. 1 5 The electrons within the specified

shells are treated as inner shell electrons and are thus

given an atomic description in terms of specifying IMFP's.

The 0 shell is not included in Table 5 since its single

electron has been assigned to the conduction band and is

thus given a solid-state description in terms of IMFP

specifications. The Fermi energy EF used to specify the

conduction band and plasmon IMFP's is taken to be 5.5 eV
33

which comes from Kittel and which is also consistent

with the assignment of one electron/atom to the conduction

band.
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TABLE 5. BINDING ENERGIES OF Ag

BINDING ENERGY
SHELLS (keV)

K 24.7

L 3.35

M 1  0.665

M 23 0.567

M 45 0.384

N 0.0127
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Our Auger spectroscopy is given in Table 6 and

similar to Au, is based on lumping together various Auger

features but in such a way as not to exclude important

contributions to the process of photoemission. Handbook
24

of Auger Electron Spectroscopy and Storm and Israel's

Report 1 5 were used to specify the averaged features and

yields. Unlike our spectroscopy for Au, we consider only

a single MNN Auger feature for Ag. This is due to the

smaller Auger energies for Ag and, in turn, the smaller

energy differences between the various features.

For the shell representation in Table 5, the

photoabsorption coefficients are shown in Figure 17. The

technique for specifying individual shell contributions

is the same used for Au. The sum of coefficients (solid

line) and data points come from Hubbell.
1 4

The inner shell IMFP's for shells MI-N are shown

in Figure 18. Similar to Au, they are based on our

technique originally discussed in a recent report6 and
8

since then in more detail in an IEEE publication. The

basis for a given IMFP is the corresponding photoabsorption

coefficient. From a practical standpoint, the M1 and M

IMFP's could be eliminated from our transport description

and for most applications, M45 as well.

The conduction band and plasmon IMFP' F are shown

in Figure 19, together with the sum of inner shell IMFP's

and the sum of all inelastic IMFP's. The ORNL free electron
22gas model was used to specify the conduction band and

plasmon IMFP's as was done for Au. The applied Fermi energy

was 5.5 eV, as noted above. We see, in our description,

that the dominant contribution to the total inelastic IMFP

comes from N shell electrons.
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TABLE 6. AUGER FEATURES OF Ag

ENERGY

TRANSITION (keV) YIELD

KLL 18.8 0.166

LMM 2.57 0.900

MNN 0.355 1.000
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The ela.-t ic IMFP is shown in Figure 20, together

with the total inelastic IMFP from the previous figure.

We used the same doscription hero used previously for Au

with Z=79 replaced by Z=47. Elastic scattering is less

important for Ag than for Au as can be seen by comparing

Figures 3 and 20.

Various stopping powers are sh,wn in Figure 21,

including one by the ORNL group based on a statistical
34

model. Good agreement is obtained, except at low energies.

We anticipate that our total value is somewhat too high at

low energies due to the first Born apprtximation becoming

less valid.

The calculated photoemission spect rum for the

EWR source shown in Figure 4 incident on Ag i.s shown in

Figure 22. The spectrum is dominated by M pho01,.('Ictron

contributions. The integrat(-d yield down to -,O.l k,,V is

8.9 x 10 - 6 coul/cal. The spectrum and yield may bw (,)in-
10 11

pared with data by Bernstein and Fromme. ci a]. in

Figure 23. Reasonably good agreement in shape is obt ained

with Bernstein's spectrometer data although his yield is

approximately twice as high. The source of this difference

has not yet been determined, but will be investigated within

the next few months.

A comparison of photoemission properties of Ag

with the previously investigated materials Ak and Au is

worth noting. Compare, e.g., Figure 22 with Figure 7.

We see that all three spectra are distinctly different

from one another. The spectrum of Ag, e.g., is noticeably

softer than that of Au and possesses a yield about one-third

as large. It should be noted, however, as has been done

before, that such relative behavior is strongly dependent

on the photon source spectrum.
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3.2 COPPER

Copper is the sixth material to be investigated

4in our program of soft x-ray photoemission. The previous

five, as well as the last material discussed in this report

(Carbon), were selected for the primary purpose of compli-

menting experimental efforts in the SKYNET program. Photo-

emission measurements have not, however, been made for Cu

as of this time. Our reasons for including it in this

original group of seven materials are that it is a commonly

used conducting material and has a desirable atomic

number (Z=27) in relation to the other materials. One of

the goals of our overall program is to provide a data base

spanning a wide range of Z-values with the Z-values of the

selected materials somewhat uniformly distributed. Copper

nicely "bridges the gap" between AR, (Z=13) and Ag (Z=47).

The description to follow of the material model

of Cu will be brief since the applied techniques are those

already used and described for Au and Ag. To begin with,
3

Cu has a material density of 8.96 g/cm . The most loosely

bound electron is an N or 4s electron which we have assigned

to the conduction band. The corresponding Fermi energy EF

is 7 eV. The remaining electrons are distributed among

the K, L, and M shells with the binding energies shown in
15

Table 7. The required Auger description is particularly
15,24simple and is given in Table 8. Only LMM Auger electrons

are relevant to the work reported here.

The photoabsorption coefficients appear in

Figure 24 based on total values tabulated by Hubbell.
1 4

The inner shell ionization IMFP's for shells L and M are

shown in Figure 25. The L-shell IMFP is small enough that

it will have little effect on the transport results.
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TABLE 7. BINDING ENERGIES OF Cu

BINDING ENERGIES
SHELL (keV)

K 8.98

L 0.953

M 0.013

TABLE 8. AUGER FEATURES OF Cu

ENERGY
TRANSITION (keV) YIELD

KLL 6.93 0.56

LMM 0.92 1.00
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The total inelastic IMFP, together with its

components and available measured values, are shown in

Figure 26. The M-shell IMFP is seen to dominate the total

based on assigning 1 e/atom to the conduction band. The

total inelastic IMFP again appears in Figure 27, this time

with the elastic IMFP. Similar to Ag, the two quantities

are comparable to one another.

Stopping powers appear in Figure 28 based on

the IMFP's just presented. Also shown is the stopping

power by a statistical model calculated by Ashley, et al. 3 4

The statistical model does not assume the same shell

structure used in this work. Instead, a mean inter-

electron spacing r5 is used which is related to the
E=( 2  2/3 -2

Fermi energy by EF =(e2/2ao(9T/4) rs , where a0 is

the Bohr radius.

The calculated EWR photoemission spectrum for Cu

appears in Figure 29. As noted above, measurements are not

available to compare with this result. The given spectrum

provides another example of how different photoemission

properties can be from one material to the next (compare

*Figure 29 to Figures 7 and 23). This spectrum, e.g., is

much softer than that for Au. Here, emission is dominated

by L-photoelectrons and LMM Auger electrons below 1 keV.
4

3.3 CARBON

Carbon provides the basis for a number of

insulating materials used on satellites, such as paint

coatings and the dielectrics Kapton and Mylar. Thus,

modeling and investigating photoemission characteristics

of C in its pure form provides a reasonable starting point
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for investigating these more complicated materials. The

3
density chosen for C in this work is 2.25 g/cm , the

density of graphite. Carbon has a Z-value of only 6 with

two electrons in the K-shell and the remaining four in the

L-shell. The binding energies for these shells are given

in Table 9. The single Auger feature, that for a KLL

transition, appears at 0.272 keV with a yield of unity

(Table 10).

The photoabsorption coefficients are shown in
14Figure 30, based on the Hubbell tabulations. The corre-

sponding inner shell ionization IMFP's are shown in
38

Figure 31, together with a result by Ashley, et al. for

polystyrene based on their insulator model. The ORNL

result has been scaled by the ratio of densities of

graphite and polystyrene. If the agreement shown is not

simply fortuitus, it indicates that a pure atomic descrip-

tion is adequate for C.

The total inelastic IMFP (essentially the L-shell

IMFP) is shown, together with the elastic IMFP in Figure 32.

As expected, the inelastic component dominates due to the

low Z nature of C.

The stopping powers for K and L shells, together

with that for polystyrene by Ashley, et al. appear in

Figure 33. Again, the polystyrene value has been scaled

as was done for the IMFP in Figure 31. The agreement is

less satisfactory here than for the IMFP's. The problems

may arise from the scaling procedure which was based on

polystyrene being dominated in weight by C. Its chemical

composition is given by C 8 H 8 . Hydrogen, undoubtedly, will

produce different degrees of effect on the stopping power

versus the total IMFP.
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TABLE 9. BINDING ENERGIES OF C

BINDING ENERGIES
SHELL (keV)

K 0.284

L 0.008

TABLE 10. AUGER FEATURES OF C

ENERGY
TRANSITION (keV) YIELD

KLL 0.272 1.00
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The EWR photoemission spectrum, together with its

cumulative yield, are shown in Figure 34. They may be

compared with measured values in Figure 35. Overall, good

agreement is obtained between the calculations and the

spectrometer data by Bernstein.

In conclusion, the calculated and measured yields

for the EWR source incident on the various materials are

given in Table 11. Carbon and gold possess the lowest and

highest yields differing with each other by a factor of

15. 7
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TABLE 11. EWR PHOTOEMISSION YIELDS IN 10~ coul/cal

MATERIAL THIS WORK BERNSTEIN FROMME, ET AL.

At. 1.5

At 2 0 3  0.821.

Au 3.2 2.1 2.1

Ag 0.88 1.5 1.6

Cu 2.0

C 0.21 0.20 0.16
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Section 4

USING BACK-BIASED DIODE DATA TO

SPECIFY PHOTOEMISSION SPECTRA - II. GOLD

This is the second note concerned with the analysis

by Fromme, et al. of back-biased diode data for an exploding

wire radiator source (EWR). Their analysis was applied to

obtain an analytic representation of the photoemission

spectrum. The first note was concerned with At and At2 03 ,

and showed significant differences in the photoemission

spectra as calculated using the SXRP code versus that deduced

from the diode data.4  It was concluded that the diode data

do not contain the needed information to provide a realistic

shape to the photoemission spectrum. A highly accurate diode

current profile would be required since a double differentia-

tion is necessary to obtain the photoemission spectrum.

We have carried out the Fromme analysis in reverse,

as was done previously for At. Starting with the photoemis-

sion spectrum, a double integration (over emission angle and

electron energy) is performed leading to electron current as

a function of the applied bias voltage. This has been done

numerically for the SXRP spectrum. In the Fromme analysis,

analytic expressions are given for both the photoemission

spectrum and diode current.

The analysis to follow is based on the original

version of the paper by Fromme, et al. There, the yield

and mean energy for the EWR source incident on Au were

1.2 x 1014 e/cal and 0.47 keV. These values have since
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been replaced by the values 1.3 x 101 4 e/cal and 0.60 keV.

The differences have no effect on the conclusions drawn

from this analysis. The calculated photoemission spectrum

and that deduced by Fromme, et al. were previously presented

in Figure 5. The Fromme spectrum is given by:

-E/E
F(E) = Qo E e electrons/cal-keV

E
0

with Q0 = 1.2 x 1014 electrons/cal and E = 0.47 keV. The
results in Figure 5 apply to the same filtering of the photon

0
spectrum, namely, 0.8 mils of kapton coated with 2000 A of At.

A double integration of the photoemission spectra

in Figure 5 over angle and energy leads to the results shown

in Figure 36. The data give the collected charge at a given

bias voltage and were taken directly from the paper by

Fromme, et al. The dashed curve is Fromme's exponential fit

to the data given by:

Q(Eb) Qo e electrons/cal

with the same Q and E previously specified. Two profiles

corresponding to the calculated photoemission spectrum are

shown. The unscaled curve is taken directly from the calcu-

lated spectrum in Figure 5. The scaled curve is simply

shifted with respect to the first to provide a better compari-

son in shape with the data and with the exponential fit.
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One can appreciate the difficulty of deducing a

good photoemission spectrum from diode data by examining

the results in the figure. Either of the profiles can pro-

vide an equally good fit to the data and, yet, the associated

photoemission spectra are significantly different from one

another. The existing data simply do not contain the needed

precision nor extend to a sufficiently high voltage to pro-

vide a reliable current profile. Furthermore, such a profile

would be poorly represented by an exponential function since

curvature does exist and critically affects the shape of the

deduced photoemission spectrum. Individual sets of data do

suggest curvature like that exhibited in the calculated

profile.

Since both real shot-to-shot variations and

uncertainties exist in the measured EWR source spectrum, we

have examined the variation in both the calculated photo-

emission spectrum and resulting diode current to variations

in the photon spectrum. The variations we considered have

already been discussed in connection with Figure 9. The

range of variation in the three photon spectra are well

beyond the expected actual variation in the EWR source

spectrum.

As previously discussed, Figure 9 shows the calcu-

lated photoemission spectra, while Figure 37 shows the
resulting diode currents for the three photon spectra. The

photoemission results have been discussed in Section 2 and

thus our comments will be brief here. The total yields for

the three cases are nearly the same because of the fortuitous

circumstance for Au that the 1.65 keV feature and the broader

higher energy continuum in the EWR source give essentially

the same total yield. Although differences do exist in the
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three diode currents which correspond to significant

differences in the photoemission spectra, it would not be

possible to select a best current profile among these

based on the data. This illustrates again the severe

problems of deducing a reasonable representation of the

photoemission spectrum from a measurement of back-biased

diode current.
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